Spontaneous mutagenesis in exponentially growing and stationary-phase, umuDC-proficient and -deficient, Escherichia coli dnaQ49.

نویسندگان

  • Anetta Nowosielska
  • Jadwiga Nieminuszczy
  • Elzbieta Grzesiuk
چکیده

Spontaneous mutations arise not only in exponentially growing bacteria but also in non-dividing or slowly dividing stationary-phase cells. In the latter case mutations are called adaptive or stationary-phase mutations. High spontaneous mutability has been observed in temperature sensitive Escherichia coli dnaQ49 strain deficient in 3'-->5' proofreading activity assured by the e subunit of the main replicative polymerase, Pol III. The aim of this study was to evaluate the effects of the dnaQ49 mutation and deletion of the umuDC operon encoding polymerase V (Pol V) on spontaneous mutagenesis in growing and stationary-phase E. coli cells. Using the argE3(OC) -->Arg+ reversion system in the AB1157 strain, we found that the level of growth-dependent and stationary-phase Arg+ revertants was significantly increased in the dnaQ49 mutant at the non-permissive temperature of 37 degrees C. At this temperature, in contrast to cultures grown at 28 degrees C, SOS functions were dramatically increased. Deletion of the umuDC operon in the dnaQ49 strain led to a 10-fold decrease in the level of Arg+ revertants in cultures grown at 37 degrees C and only to a 2-fold decrease in cultures grown at 28 degrees C. Furthermore, in stationary-phase cultures Pol V influenced spontaneous mutagenesis to a much lesser extent than in growing cultures. Our results indicate that the level of Pol III desintegration, dependent on the temperature of incubation, is more critical for spontaneous mutagenesis in stationary-phase dnaQ49 cells than the presence or absence of Pol V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for the umuDC gene products of Escherichia coli in increasing resistance to DNA damage in stationary phase by inhibiting the transition to exponential growth.

The umuDC gene products, whose expression is induced by DNA-damaging treatments, have been extensively characterized for their role in SOS mutagenesis. We have recently presented evidence that supports a role for the umuDC gene products in the regulation of growth after DNA damage in exponentially growing cells, analogous to a prokaryotic DNA damage checkpoint. Our further characterization of t...

متن کامل

I " ; Analyses of the Roles of the UmuDC Proteins of E . coli in SOS Mutagenesis and Cell Cycle Regulation

Regulated mechanisms that inhibit DNA synthesis and cell cycle progression in response to DNA damage have been shown to be essential for DNA damage tolerance in eukaryotes. Analogous mechanisms have not been as well defined in prokaryotes. Evidence presented in this thesis suggests that the UmuD and UmuC proteins of Escherichia coli participate in a mechanism to inhibit growth and DNA synthesis...

متن کامل

A conspicuous adaptability to antibiotics in the Escherichia coli mutator strain, dnaQ49.

By repeating the cycle of mutagenesis and selection, the Escherichia coli dnaQ49 mutator acquired high level resistance to ampicillin (30,000 micrograms ml-1), streptomycin (26,000 micrograms ml-1) and ofloxacin (3000 micrograms ml-1). Under the strong pressure of ofloxacin, dnaQ49 also followed the history of mutations in the gyrase and topoisomerase i.v. genes previously observed in clinical ...

متن کامل

Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide.

The mechanisms by which Escherichia coli cells survive exposure to the toxic electrophile N-ethylmaleimide (NEM) have been investigated. Stationary-phase E. coli cells were more resistant to NEM than exponential-phase cells. The KefB and KefC systems were found to play an important role in protecting both exponential- and stationary-phase cells against NEM. Additionally, RpoS and the DNA-bindin...

متن کامل

Identification of a umuDC locus in Salmonella typhimurium LT2.

The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV light and many other DNA-damaging agents. The existence of a umuDC analog in Salmonella typhimurium has been questioned. With DNA probes to the E. coli umuD and umuC genes, we detected, by Southern blot hybridization, sequences similar to both of these genes in S. typhimurium LT2. We also confirmed that the presenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 51 3  شماره 

صفحات  -

تاریخ انتشار 2004